Why knot? Algebraic coloring invariants of Legendrian knots Mellon Forum Grace Hopper College

Lực Ta

Advisor: Sam Raskin

April 22, 2025

Historical background

- Coloring knots
- The Legendrian classification problem
- 2 GL-racks
- 3 Distinguishing results
- 4 Computer search
- 5 Algebraic results: A bird's-eye view

Let's play a game. . . (1/2)

Let's play a game...(2/2)

Reidemeister moves

Two knots are equivalent if and only if they're related by these moves:

An early way to distinguish knots

A knot is *tricolorable* if we can color its strands in the following way:

- We use exactly 3 colors (no more, no fewer).
- The three strands at each crossing either (a) all share the same color or (b) all have different colors.

Why is tricolorability a "knot invariant"?

Why knot? Algebraic coloring invariants of Legendrian knots

The standard contact structure

Legendrian knots are knots with a certain restriction on their shape, determined by something called the *standard contact structure*:

- When y = 0, the planes are flat.
- When moving in the positive *y*-direction, the slopes grow more negative.
- When moving in the negative *y*-direction, the slopes grow more positive.

Legendrian knot diagrams

Historical background

- Coloring knots
- The Legendrian classification problem

2 GL-racks

- 3 Distinguishing results
- 4 Computer search
- 5 Algebraic results: A bird's-eye view

- We can use a gadget called a **GL-rack** to color Legendrian knots (hence distinguishing them).
- GL-racks are expansions of *racks* and *quandles*, which are gadgets that color non-Legendrian knots.
- We can assign a GL-rack $\mathcal{G}(\Lambda)$ to every Legendrian knot Λ .
 - Colorings of Λ must satisfy certain criteria imposed by $\mathcal{G}(\Lambda).$
- To distinguish Legendrian knots, it suffices to distinguish their GL-racks. And that's when we get to "color"!

Historical background

- Coloring knots
- The Legendrian classification problem
- 2 GL-racks

Oistinguishing results

- 4 Computer search
- 5 Algebraic results: A bird's-eye view

Solving an old conjecture (1/2)

- Like before, we construct GL-racks $\mathcal{G}(\Lambda_1)$ and $\mathcal{G}(\Lambda_2)$.
- These GL-racks satisfy certain criteria determined by cusps, strands, and crossings.

Theorem

 Λ_1 and Λ_2 are distinct.

Proof sketch.

- ${\small \textcircled{O}}$ Using a computer search, we look for ways to color Λ_1 and Λ_2 with GL-racks.
- Interpretent of the second second
 - There are 3 ways to color Λ_1 by L under the criteria of $\mathcal{G}(\Lambda_1)$.
 - However, there aren't any ways to color Λ_2 by L like this!
- § Since their coloring numbers are different, Λ_1 and Λ_2 are distinct.

Solving recent conjectures (1/2)

Similarly, we can distinguish these two Legendrian knots...

- ... and these two Legendrian knots.
- This solves several open questions posed in 2023!

Historical background

- Coloring knots
- The Legendrian classification problem
- 2 GL-racks
- 3 Distinguishing results
- Computer search
- 5 Algebraic results: A bird's-eye view

Enumeration (1/2)

- *Quandles* are a specific type of rack. They were invented 10 years before racks were.
- We can count the algebraic gadgets we've seen today based on how many "colors" they contain:

Number of "colors"	0	1	2	3	4	5	6	7	8
GL-racks	1	1	4	13	62	308	2132	17268	189373
GL-quandles	1	1	2	6	19	74	353	2080	16023
Racks	1	1	2	6	19	74	353	2080	16023
Quandles	1	1	1	3	7	22	73	298	1581

Historical background

- Coloring knots
- The Legendrian classification problem
- 2 GL-racks
- 3 Distinguishing results
- 4 Computer search
- 5 Algebraic results: A bird's-eye view

A brief overview of some even more abstract findings...

- There's a natural one-to-one correspondence between racks and GL-quandles.
 - Cool because racks and GL-quandles were developed independently!
- We can use *symmetries* to...
 - classify several infinite families of GL-racks.
 - better understand how different GL-racks work.
 - understand how GL-racks interact with one another.
- Certain GL-racks allow for other methods of distinguishing Legendrian knots.
 - These methods may be more effective than coloring in certain cases.
 - They also have a natural relationship to algebraic gadgets called *tensor products*.

Historical background

- Coloring knots
- The Legendrian classification problem
- 2 GL-racks
- 3 Distinguishing results
- 4 Computer search
- 5 Algebraic results: A bird's-eye view

Thank you!

Generalized Legendrian racks: Classification, tensors, and knot coloring invariants

Luc Ta

Contact: luc.ta@yale.edu | luc-ta.github.io

Acknowledgments

This work was completed in partial fulfillment of the senior requirements for the math major at Yale. I thank Sam Raskin, my thesis adviser, for his many insights during the research and writing process. I also thank Head Moyn and Hopper College for hosting this talk. (For more acknowledgments, see the preprint plugged above.)

Lực Ta