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Smooth knots

Definition

A knot is a smooth simple closed curve in R3.
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The standard contact structure

Definition

The standard contact structure on R3, denoted by ξstd, is an
assignment of a plane to each point (x , y , z) defined by dz − y dx = 0.

y

z

x

When y = 0, the planes are flat. When moving in the positive y -direction,
the slopes grow more negative; when moving in the negative y -direction,
the slopes grow more positive.
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Legendrian knots

Definition

A smooth knot is called Legendrian if it lies everywhere tangent to ξstd.

We often study Legendrian knots via their front projections onto the
xz-plane, viewed from the negative y -axis.

Have cusps rather than vertical tangencies

Only have one type of crossing
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Distinguishing between Legendrian knots

Definition (Legendrian isotopy)

Two Legendrian knots are equivalent iff one can be deformed into the
other without cutting, self-intersecting, or losing tangency to ξstd.

Legendrian knots have two classical invariants, called the
Thurston–Bennequin and rotation numbers.

Definition (Classical invariants)

Let Λ be a Legendrian knot. Using its front projection, define

tb(Λ) := #pos. crossings−#neg. crossings− 1

2
#cusps

and rot(Λ) :=
1

2
(#downward cusps−#upward cusps).

Some Legendrian knots, including unknots, are completely determined by
their smooth knot type and classical invariants.
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Stabilization

Fix an orientation of a Legendrian knot Λ.

Definition

A stabilization transforms Λ without altering its underlying knot type by
adding a “zig-zag” (i.e., two cusps) to a strand of the front projection:

Stabilization subtracts 1 from tb(Λ) and adds ±1 to rot(Λ) (depending on
orientation).
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Quick example

Example

Positively stabilizing the left unknot yields the right unknot, so

tb(Λleft) = −1 ̸= −2 = tb(Λright), and

rot(Λleft) = 0 ̸= 1 = rot(Λright).

Hence, these unknots are not Legendrian isotopic, despite being isotopic as
smooth knots.
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Legendrian knot mosaics

Definition

A Legendrian n-mosaic depicts a Legendrian front projection using the
following tiles in an n × n grid:

The mosaic number of Λ, denoted by m(Λ), is the smallest possible size
n of a Legendrian knot mosaic of Λ.
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Research questions

Pezzimenti and Pandey (2022) showed that stabilization can increase or fix
the mosaic number, like with the unknots we saw earlier.

They left off with these questions:

Do there exist bounds on m(Λ) in terms of tb(Λ) and rot(Λ)? Yes!

Can stabilizing a Legendrian knot reduce its mosaic number? Yes!

Within a smooth knot type, is the minimal mosaic number always
attained by a Legendrian representative with maximal
Thurston-Bennequin invariant? No!
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Lower bound on m(Λ), part 1/3

tb∗(inner tiles) ≥ −(n − 2)2
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Lower bound on m(Λ), part 2/3

tb∗(outer tiles) ≥ −(n − 1)

=⇒ tb(Λ) ≥ −(n − 2)2 − (n − 1)
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Lower bound on m(Λ), part 3/3

Theorem

If tb(Λ) < 0, then

m(Λ) ≥

⌈√
− tb(Λ)− 3

4
+

3

2

⌉
.

Side note: We also found a weaker bound that works when tb(Λ) ≥ 0.

Theorem

If Λ is a Legendrian knot with 4| rot(Λ)|+ tb(Λ) ≥ 0, then

m(Λ) ≥
⌈√

4| rot(Λ)|+ tb(Λ)
⌉
.
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Sharpness: The crab bucket sequence

The first of these lower bounds is attained by Legendrian representatives
of infinitely many distinct smooth knot types! Consider the sequences of
odd and even crab buckets:

Figure: The first three odd crab buckets: β5, β7, and β9.

Both sequences attain the first lower bound on the previous slide.

Kipe, Pezzimenti, Schaumann, Ta*, Wong Computing the Mosaic Numbers of Legendrian Knots January 10, 2025 16 / 40



Odd crab buckets

Figure: The construction of β7.

Observation

For all odd n ≥ 5, βn is the Legendrian connected sum of torus knots

(2, 3)#(2, 5)# . . .#(2, n − 2)#(2, n − 4)# . . .#(2, 3).
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Even crab buckets

Figure: The construction of β8.

Observation

For all even n ≥ 6, βn is the Legendrian connected sum of torus knots

(2, 3)#(2, 5)# . . .#(2, n − 3)#(2, n − 3)#(2, n − 5)# . . .#(2, 3).
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Linear algebraic perspective

We can assign five integers to each oriented tile t, including tb∗(t)
and rot∗(t).

Then, we can encode them into a matrix viewed as a linear map
Z25 → Z5. After some Fourier-Motzkin elimination. . .

. . . we get the same bounds as before or slightly worse.
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On Legendrian unknots

To get upper bounds on m(Λ), it suffices to produce a valid mosaic for Λ.
Pezzimenti and Pandey (2022) constructed mosaics for infinitely many
Legendrian unknots, called the Kraken sequence, with rot = 0. Inspired,
we initially constructed a sequence of unknots, called fish ladders, having
maximal | rot | (the boundaries of the mountain diagram shown below).

But what about all the other Legendrian unknots?
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Barn tiles

For any Legendrian unknot ΛU , we can construct a mosaic for ΛU using
barn tiles, which are bounded by four mosaic tiles.
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Soil setups

Our construction begins with a soil setup, which can look like either of
these (possibly with more crossings, called soil crossings):
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Krakens and fishes

Then, we perform moves on barn tiles above and below the soil, based on
the Kraken and fish ladder constructions.

The numbers of mosaic tiles, soil crossings, Kraken moves, and fish moves
we use are determined by tb(ΛU) and rot(ΛU).
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Example when rot(ΛU) ̸= 0

Figure: Construction when tb(ΛU) = −19 and r(ΛU) = ±4.
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Example when rot(ΛU) = 0

Figure: Construction when tb(ΛU) = −29 and r(ΛU) = 0.
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Results

Working backwards from this algorithmic construction yields the following.

Theorem

If ΛU is a Legendrian unknot with rot(ΛU) ̸= 0, then

m(ΛU) ≤

⌈√
3| rot(ΛU)| − tb(ΛU)−

11

4
+

3

2

⌉
.

If instead rot(ΛU) = 0, then

m(ΛU) ≤

⌈√
− tb(ΛU) +

5

4
+

3

2

⌉
.

The upshot: Using all of our bounds thus far, we were able to compute
the exact mosaic numbers of 141 distinct Legendrian unknots!
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Enumerating Legendrian link mosaics

Oh, Hong, Lee, and Lee (2015) used state matrices to compute the
number of m × n classical link mosaics. We adapted their proof to
enumerate m × n Legendrian link mosaics.

Theorem

Let m, n ∈ Z+. If m = 1 or n = 1, then the total number D
(m,n)
L of all

m × n Legendrian link mosaics is 1. Otherwise,

D
(m,n)
L = 2||(Xm−2 + Om−2)

n−2||,

where ||M|| denotes the sum of all entries of a matrix M, and Xm−2 and
Om−2 are 2m−2 × 2m−2 matrices defined recursively by

Xk+1 :=

[
Xk Ok

Ok Xk

]
and Ok+1 :=

[
Ok Xk

Xk 3Ok

]
for k = 0, 1, . . . ,m − 3, with 1× 1 matrices X0,O0 :=

[
1
]
.
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Number of Legendrian link n-mosaics
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Figure: Quadratic exponential growth of the number D
(n,n)
L of suitably connected

Legendrian n-mosaics.
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Legendrian n-mosaics vs. classical n-mosaics
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Figure: Negative quadratic exponential growth of the ratios δ(n) between the
number of Legendrian link n-mosaics and the number of classical ones.
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Our algorithm

Representing each tile as a base 10 digit, we can encode n× n mosaics
as n2-digit numbers by reading from left to right, top to bottom.

⇔


0 2 1 2 1
2 8 7 4 6
3 9 9 1 6
2 4 3 4 6
3 5 5 5 4

 ⇔ 0212128746399162434635554

Starting at 0, we simply “count up” in a way that guarantees we list
every suitably connected mosaic.

To determine the smooth knot type of the resulting mosaics, we used
the HOMFLY–PT polynomial.
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Results

We obtained partial censuses for 18 smooth knot types.

These answered some of our major research questions:
Can stabilization ever reduce m(Λ)? Yes! But, stronger than that. . .
Are there smooth knot types for which the minimal mosaic number is
only attained by a stabilized Legendrian representative?
Yes—the knot type 81!

S+◦S−−−−−−→
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Notable censuses

Below are the (abridged) censuses for negative trefoils and 81.
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Crab buckets and destabilization

Question

Are there infinitely many cases where stabilization decreases m(Λ)?

Conjecture

Every odd crab bucket βn, oriented so that rot(βn) = 1, cannot be
negatively destabilized without increasing its mosaic number.

The computer search shows this is true for β5, which is a negative trefoil:

S+−−−→
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More future questions

Infinitely many examples like 81?

Bounding by other invariants

Extending barn tiles to Legendrian nontrivial knots

Random Legendrian knot mosaics
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End matter
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Thank you!

Contact: luc.ta@yale.edu | luc-ta.github.io
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