MATH 370 (Sp. 2025): ULA Exam II Review Session (with Luc Ta and Adam Wesley)

Remember to sign in, using either the QR code or this link.

Problem 1. Let K/F be a finite Galois extension, and let $f \in F[x]$ be a separable polynomial of degree *n*. Show that if *K* is the splitting field of *f* over *F*, then $[K : F] \mid n!$.

Problem 2. Use the internal semidirect product theorem to classify the Galois groups of the following polynomials $f \in \mathbb{Q}[x]$ over \mathbb{Q} .

(a)
$$f = x^3 - 2$$
.
(b) $f = x^4 - 2$.
(c) $f = x^7 - 13$.
(d) $f = (x^3 - 2)(x^2 - 2)(x^2 + 1)$.
Problem 3 This problem gives

Problem 3. This problem gives us a chance to practice (a) identifying normal subgroups of a given group and (b) applying what the fundamental theorem of Galois theory tells us about normal subgroups and quotient groups.¹ Let $\alpha := \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$. You can take for granted that $G := \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is isomorphic to the group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, where multiplication is defined as follows:

$$ij = k$$
, $jk = i$, $ki = j$, $i^2 = j^2 = k^2 = -1$, $(-1)^2 = 1$, and $(-1)g = -g = g(-1)$ $\forall g \in G$.

(This group is called the *quaternion group*.)

- (a) Let $H \leq G$. In the context of this problem, is $\mathbb{Q}(\alpha)^H/\mathbb{Q}$ necessarily Galois? If so, then what is $\operatorname{Gal}(\mathbb{Q}(\alpha)^H/\mathbb{Q})$ isomorphic to?
- (b) Let β := √2 + √3. You can take for granted that β ∈ Q(α), and [Q(α) : Q(β)] = 2. Combine these facts with part (a) to give a new proof that Gal(Q(β)/Q) ≅ Z₂ × Z₂.

Problem 4. Let p be prime, and let $f \in \mathbb{Q}[x]$ be irreducible of degree p. Prove that if f has exactly two nonreal roots, then the Galois group of f over \mathbb{Q} is isomorphic to S_p .

(Hint: What can we say about the action of the Galois group on the roots? Also, what do we know about S_p when p is prime?)

The next two problems offer practice with purely inseparable field extensions. Recall from hw6 that a field extension K/F is purely inseparable if and only if, for every element $\alpha \in K$, there exists a positive integer n > 0 such that $\alpha^{p^n} \in F$, where p is the characteristic of the extension.

Problem 5. Let K/M/F be field extensions. Show that K/F is purely inseparable if and only if K/M and M/F are both purely inseparable.

Problem 6. Let K/M/F be field extensions of finite degree such that K/M is normal and M/F is purely inseparable. Prove that K/F is a normal field extension. Deduce that all purely inseparable field extensions of finite degree are normal.

Problem 7. True/false. Justify your answers.²

(a) Any field extension of degree n contains an element of degree n (over the base field).

¹In particular, see the discussion under "Properties of The Galois Correspondence" in Din's notes.

²Credit to Hamilton Wan for several of these questions.

- (b) The Galois group of an inseparable extension is trivial.
- (c) The Galois group of a purely inseparable extension is trivial.
- (d) Every purely inseparable extension is inseparable.
- (e) If a polynomial $f \in F[x]$ splits over some $K \supset F$, then K/F is normal.
- (f) A reducible polynomial of degree 5 is solvable by radicals.
- (g) A reducible polynomial of degree 6 is solvable by radicals.
- (h) A reducible polynomial of degree 6 that has no roots in the base field is solvable by radicals.

Problem 8. (*Challenge problem A.*) Let K/F and L/F be finite Galois extensions, and let KL/F be the smallest extension of F that contains K and L. Use the internal (semi)direct product theorem to show that if $K \cap L = F$, then there is an isomorphism $\operatorname{Gal}(KL/F) \cong \operatorname{Gal}(K/F) \times \operatorname{Gal}(L/F)$.

(Hint: The setup of this problem might remind you of a previous homework problem. One approach might be to revisit your proof of the previous homework problem to find subgroups of Gal(KL/F) that are isomorphic to Gal(K/F) and Gal(L/F). Then, show that the internal (semi)direct product theorem applies to these subgroups. Along the way, you might use the fact that KL/F is Galois, which requires some justification.)

Problem 9. (*Challenge problem B.*) Let $\mathbb{Q}[x, y]$ be the ring of polynomials in two variables with rational coefficients. Show that

$$\operatorname{Der}_{\mathbb{Q}}\mathbb{Q}[x,y] = \left\{ f \frac{\partial}{\partial x} + g \frac{\partial}{\partial y} : f,g \in \mathbb{Q}[x,y] \right\}.$$

(Hint: For the " \supseteq " direction, use the fact that $Der_{\mathbb{Q}} \mathbb{Q}[x, y]$ is a $\mathbb{Q}[x, y]$ -module. For the " \subseteq " direction, start by arguing that all elements $D \in Der_{\mathbb{Q}} \mathbb{Q}[x, y]$ are \mathbb{Q} -linear maps. Then, use this fact to reduce the problem to computing what $D(x^m y^n)$ is, where $m, n \in \mathbb{Z}_{>0}$ are nonnegative integers.)

Problem 10. (Challenge problem C, practice with solvable groups in general) Prove that every group of order n < 60 is solvable. In particular, this proves that A_5 is the smallest group which is not solvable. (Hint: lots of these orders admit only abelian groups, which are solvable. Only one of these orders has three distinct prime factors $(30 = 2 \times 3 \times 5)$. The Sylow theorems are your friend.)

You're doing great! :)