MATH 370 (Sp. 2025): ULA Midterm I Review Session (with Luc Ta and Adam Wesley)

Remember to sign in, using either the QR code or this link.

Problem 1. Let *F* be a subfield of \mathbb{C} , and let K/F be a degree 2 extension. Is K/F necessarily Galois?

Problem 2. Let $F \subset M \subset K$ be fields.

(a) Suppose K/F is Galois. Is K/M necessarily Galois?

- (b) Suppose K/F is Galois. Is M/F necessarily Galois?
- (c) Suppose M/F and K/M are both Galois. Is K/F necessarily Galois?

Problem 3. Classify the Galois groups of the following polynomials.

- (a) $f(x) := x^3 3x + 1$ over \mathbb{Q} .
- (b) The minimal polynomial of $\sqrt{2+i}$ over \mathbb{Q} .

(c) The minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} .

(d) $f(x) := x^4 - 2$ over *F*, where *F* is the splitting field of $x^2 - 2$ over \mathbb{Q} .

(e) The same polynomial as in the last part, but now over \mathbb{Q} .

Problem 4. Let *K* be a subfield of \mathbb{R} , and let $f \in K[x]$ be an irreducible polynomial. Show that if the Galois group of *f* has odd order, then the discriminant of *f* is positive. (*Hint: Trying to prove that an abstract polynomial has a positive discriminant is kind of weird. Is there a way to avoid doing that while still solving the problem?)*

Problem 5. Let K/F be a Galois extension such that $Gal(K/F) \cong Z_3 \times Z_{18}$. How many intermediate fields M are there such that

(a) [M:F] = 18(e) $Gal(K/M) \cong Z_2$ (b) [M:F] = 27(f) |Gal(K/M)| = 6(c) [M:F] = 3(g) $Gal(K/M) \cong Z_{27}$ (d) [M:F] = 6(h) |Gal(K/M)| = 27

Problem 6. True or false? Justify your answer.

- (a) If $\alpha \neq \beta$ are both irrational, then $\mathbb{Q}(\alpha, \beta)$ is not a simple extension of \mathbb{Q} .
- (b) Every algebraic extension is finite.
- (c) Two extensions of the same degree are isomorphic.
- (d) Suppose there exist α and β such that the extensions $\mathbb{Q}(\alpha)/\mathbb{Q}$ and $\mathbb{Q}(\beta)/\mathbb{Q}$ are isomorphic. Then α and β have the same minimal polynomial over \mathbb{Q} .

Problem 7. Let K/\mathbb{Q} be a Galois extension of degree 4 and suppose that $i \in K$. Prove that $Gal(K/\mathbb{Q}) \simeq Z_2 \times Z_2$. *Hint: what can you say about the extension* $K/\mathbb{Q}(i)$?

Problem 8. Show that there are infinitely many irreducible polynomials over any field. *Hint: think about Euclid's proof that there are infinitely many primes in* \mathbb{Z} .

You're doing great! :)