
MATH 370 (Sp. 2025): ULA Midterm I Review Session (with Lực Ta and Adam Wesley)

Remember to sign in, using either the QR code or this link.

Problem 1. Let F be a subfield of C, and let K/F be a degree 2 extension. Is K/F necessarily
Galois?

Solution. Yes. Since F ⊂ C, HW2 problem 4 (Stewart 5.5) implies that K = F (
√
λ) for some λ ∈ F

(and
√
λ /∈ F by hypothesis). Thus, K is the splitting field of x2 − λ ∈ F [x].

Problem 2. Let F ⊂ M ⊂ K be fields.

(a) Suppose K/F is Galois. Is K/M necessarily Galois?

Solution. Yes, by the fundamental theorem of Galois theory.

(b) Suppose K/F is Galois. Is M/F necessarily Galois?

Solution. No. Take F = Q and M = Q(3
√
2), and let K be the splitting field of x3 − 2 (so that

K = Q( 3
√
2, ζ3), where ζ3 = exp(2πi/3) is a third root of unity). Since K is the splitting field

of an irreducible (by Eisenstein with p = 2) polynomial over C, we know K/F is Galois. But
M/F isn’t Galois because [M : F ] = 3 ̸= 1 = |Gal(M/F )|.

(c) Suppose M/F and K/M are both Galois. Is K/F necessarily Galois?

Solution. No. Take F = Q, M = Q(
√
2), and K = Q( 4

√
2).

Problem 3. Classify the Galois groups of the following polynomials.

(a) f(x) := x3 − 3x+ 1 over Q.

Solution. It’s irreducible by reduction modulo 2 (it’s cubic, so it’s reducible if and only if it has
a root, which it doesn’t in F2). So, a theorem from class says that the Galois group is A3

∼= Z3

if the discriminant is a square in Q and S3 otherwise. Indeed, the discriminant is 81, so the
Galois group is Z3.

(b) The minimal polynomial of
√
2 + i over Q.

Solution. Call this thing α. The minimal polynomial is f(x) := x4−4x2+5, which is irreducible
over Q; f(x+1) = x4+4x3+2x2−4x+2 is irreducible by Eisenstein with p = 2. (Alternatively,
you could reduce modulo 2, check that f has no roots in F2, and then conclude that it also
doesn’t factor into irreducible quadratics since the only such quadratic over F2 is x2 + x + 1,
which doesn’t square to f .)

Thus, Q(α) has degree 4, but is it the splitting field? Well, using the quadratic formula on
f(
√
x), we find that the roots of f are ±α and ±β, where β =

√
2− i. In particular, the roots

are all distinct, so by a problem from HW4, the form of f tells us that the Galois group is
contained in D4.

On the other hand, αβ =
√
5 /∈ Q(α), so β /∈ Q(α), so the splitting field—which is Q(α, β)—

isn’t Q(α). It follows that the Galois group has order greater than 4, but it’s contained in D4,
so it has to be D4. (Indeed, we have i ∈ Q(α), so the minimal polynomial of β over Q(α) is
x2 − 2 + i.)
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(c) The minimal polynomial of
√

2 +
√
2 over Q.

Solution. Call this thing α, and call the splitting field K. To find [K : Q] = |Gal(K/Q)|, one
can compute that α is a root of x4 − 4x2 + 2, which is irreducible over Q by Eisenstein with
p = 2. So, Q(α) has degree order 4.

But does K also have order 4? Well, let’s find out what the roots are by using the quadratic
formula on x2 − 4x + 2. We get that the roots are ±α and ±β, where β =

√
2−

√
2, so

K = Q(α, β). By squaring α, we observe that Q(α) contains
√
2. Does it also contain β? One

litmus test is to see what αβ is. It’s actually
√
2, which, sure enough, is in Q(α). Therefore,

Q(α) ∋
√
2/α = β. Hence, Q(α) = K, so the Galois group has order 4.

So, is it Z2 × Z2 or Z4? Well, if α is sent to −α, then −α is sent to α. Similarly, if β is sent to
−β, then −β is sent to β. This gives us two distinct elements of order 2 in the Galois group, so
it’s Z2 × Z2 since Z4 only has one element of order 2.

(d) f(x) := x4 − 2 over F , where F is the splitting field of x2 − 2 over Q.

Solution. Write F = Q(
√
2). The splitting field of f over Q is K := Q( 4

√
2, i) = F ( 4

√
2, i), and

Gal(K/Q) ≤ D4 by a problem from HW4 (look at the form of f). It follows from the Tower
Law that

|Gal(K/F )| = [K : F ] =
[K : Q]

[F : Q]
=

|Gal(K/Q)|
2

≤ |D4|
2

= 4,

so Gal(K/F ) is either 1, Z2, Z4, or Z2 × Z2.

We claim that Gal(K/F ) ∼= Z2 × Z2. By the bound from above, it will suffice to just find two
distinct elements of order 2, since that will imply that Z2 × Z2 ≤ Gal(K/F ). Indeed, consider
the maps [ 4

√
2 7→ − 4

√
2, i 7→ i] and [ 4

√
2 7→ 4

√
2, i 7→ −i]. These are two valid automorphisms of

order 2 that fix F , so we’re done. (Note that 4
√
2 can’t be sent to ±i 4

√
2 since then

√
2 = ( 4

√
2)2

would get sent to (±i 4
√
2)2 = −

√
2, meaning that F wouldn’t be fixed.)

Or, we can deduce that it’s Z2 × Z2 (as opposed to Z4) by the fundamental theorem of Galois
theory, since K has two distinct subextensions of degree 2 over F (which, by the fundamental
theorem, correspond to two distinct subgroups of order 2 in Gal(K/F )).

(e) The same polynomial as in the last part, but now over Q.

Solution. It’s D4. The previous part and the Tower Law imply that [K : Q] = 8. The only
subgroup of order 8 in S4, thanks to Sylow II.

Problem 4. Let K be a subfield of R, and let f ∈ K[x] be an irreducible polynomial. Show that if
the Galois group of f has odd order, then the discriminant of f is positive.

Solution. Let’s prove the contrapositive. Note that the discriminant of f can’t be 0, since then f
would have a repeated root, making it inseparable and thus (by virtue of the fact that K ⊂ C)
reducible.

So, suppose that the discriminant of f is negative. Then, by the definition of the discriminant
in terms of the roots, at least one of the roots α is nonreal; since K ⊂ R, it follows that α is also
a (distinct) root of f . Therefore, complex conjugation is an order 2 element of f (rather than an
order 1 element), so by Lagrange’s theorem, the Galois group has even order.

(Note that complex conjugation is always in the Galois group of a polynomial over a real ground
field—sometimes as an order 1 element/the identity map, other times as an order 2 element—
because complex conjugation fixes R and is a field automorphism of C.)



Problem 5. Let K/F be a Galois extension such that Gal(K/F ) ∼= Z3×Z18. How many intermediate
fields M are there such that

(a) [M : F ] = 18

Solution. Four Z3’s, one generated by (1, 0) and the others generated by (n, 6) for n = 0, 1, 2.

(b) [M : F ] = 27

Solution. There’s a unique Z2, generated by (0, 9). To see that this is the unique one, note that
in Z3 × Z18

∼= Z3 × Z9 × Z2, there can’t be any nonidentity elements of order dividing 2 inside
the Z3 or the Z9.

(c) [M : F ] = 3

Solution. Four. There’s one Z3 × Z6
∼= Z3 × Z3 × Z2, which we can see by writing Z3 × Z18

∼=
Z3 × Z9 × Z2. There are also three Z18’s, namely those generated by (n, 1) for n = 0, 1, 2.

(d) [M : F ] = 6

Solution. Four. There’s one Z3 × Z3, namely ⟨(1, 0), (0, 6)⟩, and three Z9’s, namely those gen-
erated by (n, 2) for n = 0, 1, 2.

(e) Gal(K/M) ∼= Z2

Solution. This is the same as part (b).

(f) |Gal(K/M)| = 6

Solution. Four. Note that such a subgroup is an abelian group, so it must be isomorphic to
Z6

∼= Z3×Z2. So, you can reason through this one by decomposing Z3×Z18
∼= Z3×Z9×Z2 and

using the previous parts. Or, you could note first that (1, 0) and (0, 9) generate a Z3 ×Z2
∼= Z6.

We also have three other copies of Z6, each generated by (n, 3) for n = 0, 1, 2.

(g) Gal(K/M) ∼= Z27

Solution. None.

(h) |Gal(K/M)| = 27

Solution. Just one, generated by (1, 0) and (0, 2).

Problem 6. True or false? Justify your answer.

(a) If α ̸= β are both irrational, then Q(α, β) is not a simple extension of Q.

(b) Every algebraic extension is finite.

(c) Two extensions of the same degree are isomorphic.

(d) Suppose there exist α and β such that the extensions Q(α)/Q and Q(β)/Q are isomorphic.
Then α and β have the same minimal polynomial over Q.



Problem 7. Let K/Q be a Galois extension of degree 4 and suppose that i ∈ K. Prove that
Gal(K/Q) ≃ Z2 × Z2. Hint: what can you say about the extension K/Q(i)?

Problem 8. Show that there are infinitely many irreducible polynomials over any field. Hint: think
about Euclid’s proof that there are infinitely many primes in Z.

You’re doing great! :)


