MATH 370 (Sp. 2025): ULA Final Review Session (with Luc Ta and Adam Wesley)

Remember to sign in, using either the QR code or this link.

Problem 1. Let *F* be a finite field, and let K/F be an extension of finite degree.

- (a) Show that K/F is Galois. (For practice, give two different proofs, one using a homework result and the other using only the finite fields theorem.)
- (b) Let p be prime, and let $n, m \ge 1$ be integers such that $m \mid n$. What is $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}]$? (For practice, give two different justifications, one using the definition of the degree of a field extension and the other combining part (b) with a homework result.)
- (c) Optional: Show that K/F is simple.

Problem 2. Show that if *F* is an algebraically closed field, then $|F| = \infty$. (For practice, give two different proofs, one using a homework result and the other using only the finite fields theorem.)

Problem 3. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} . Is $\overline{\mathbb{Q}}$ countable or uncountable?

Problem 4. Show that if K/F is a finite extension, then [K : F] is divisible by $|\operatorname{Gal}(K/F)|$. Deduce that if $\alpha \in \mathbb{C}$ is constructible over \mathbb{Q} , then $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is solvable.

Problem 5.

- (a) Let K/\mathbb{Q} be a finite Galois extension. Describe a one-to-one correspondence between
 - (i) subextensions $K/M/\mathbb{Q}$ such that $[M : \mathbb{Q}] = 2$ and
 - (ii) nontrivial group homomorphisms from $\operatorname{Gal}(K/\mathbb{Q})$ to $\mathbb{Z}/2\mathbb{Z}$.

(Note: This does **not** generalize to integers other than 2.)

- (b) Now, let *K* be the splitting field of the 60th cyclotomic polynomial Φ_{60} over \mathbb{Q} .
 - (i) How many subextensions $K/M/\mathbb{Q}$ are there such that $[M : \mathbb{Q}] = 8$?
 - (ii) Using part (a) (or otherwise), find the number of subextensions $K/M/\mathbb{Q}$ such that [K:M] = 8.

Problem 6. True or false? Justify your answer. Where possible, try to produce an example/counterexample. If the statement is false, what needs to change to make it true (excluding things like inserting the word "not")?

- (a) A purely inseparable extension is inseparable.
- (b) There exists a nontrivial extension of \mathbb{R} not contained in \mathbb{C} .
- (c) There exists a nontrivial algebraic extension of $\overline{\mathbb{Q}}$.
- (d) There are no irreducible polynomials in $\mathbb{C}[x]$.

Problem 7. What groups arise as Galois groups of quartic polynomials over \mathbb{Q} ? For each isomorphism type G, list a polynomial with Galois group isomorphic to G. Note: (i) Remember that these polynomials may be reducible. (ii) If you're having trouble thinking of examples for some of these, try taking some from Problem 10.

Problem 8. Prove that the polynomial $f(x) = x^5 - x + 15 \in \mathbb{Q}[x]$ is solvable by radicals.

Problem 9. Prove that a field F is algebraically closed iff every endomorphism (i.e., linear map) $F^n \to F^n$ has an eigenvector. Linear algebra is useful!

Problem 10.

- (a) Show that if $f = x^4 + rx + s \in F[x]$ factors into two quadratics $f = (x^2 + a_1x + b)(x^2 + a_2x + c)$ over a field *K* containing *F*, then $a_1 = -a_2$.
- (b) Compute the Galois groups of the following quartics over \mathbb{Q} . You may use the discriminant formula $\Delta(x^4 + rx + s) = -27r^4 + 256s^3$ and the resolvent cubic formula $g = x^3 4sx r^2$.
 - (i) $f = x^4 + x^3 + x^2 + x + 1$.
 - (ii) $f = x^4 + 1$.
 - (iii) $f = x^4 4x + 2$.
 - (iv) $f = x^4 + 8x + 12$. (Feel free to use a calculator for the discriminant for this one.)
 - (v) $f = x^4 + 3x + 3$.
 - (vi) $f = x^4 + 6x^3 + 13x^2 + 12x + 4$.

Problem 11. Let $n \ge 1$ be an integer. Prove that for all groups *G* of order *n*, there exists a subfield *F* of the field of rational functions $K := \mathbb{Q}(x_1, \ldots, x_n)$ such that $\operatorname{Gal}(K/F) \cong G$.

You're doing great! :)