MATH 305 (SP24) Midterm Review Session with Luc :)

Throughout this review session, I'll use m to denote the Lebesgue measure, \mathcal{M} to denote the Lebesgue σ -algebra, and \mathcal{B} to denote the Borel σ -algebra.

Problem 1. Let μ and ν be finite measures on the measure space (X, \mathcal{A}) , and let $\mathcal{C} \subset \mathcal{A}$. Suppose that for all $A \in \mathcal{C}$, we have $\mu(A) = \nu(A)$. Must $\mu = \nu$?

Problem 2. Is every Lebesgue measurable set is the union of a Borel set and a Lebesgue null set?

Problem 3. More generally, suppose (X, \mathcal{A}, μ) is a measure space, let \mathcal{N} be the collection of μ^* -null subsets of X, and let $\mathcal{C} = \sigma(\mathcal{A} \cup \mathcal{N})$. Suppose also that for all $N \in \mathcal{N}$, there exists some $M \in \mathcal{A}$ such that $N \subset M$, and $\mu(M) = 0$.

- (a) Show that $D \in C$ if and only if there exist $A_D \in A$ and $N_D \in N$ such that $D = A_D \cup N_D$.
- (b) So, for all $D \in C$, we can define $\overline{\mu}(D) = \mu(A_D)$. Assuming that $\overline{\mu}$ is well-defined, show that $\overline{\mu}$ defines a measure on C. (We say that $(X, C, \overline{\mu})$ is the *completion* of (X, A, μ) .)

Problem 4. True or false:

- (a) There exists a nonempty open subset $U \subset \mathbb{R}$ such that m(U) = 0.
- (b) If $E \subset \mathbb{R}$ and $int(E) = \emptyset$, then $m^*(E) = 0$.
- (c) If $E \subset \mathbb{R}$ and $m^*(E) = 0$, then $int(E) = \emptyset$.

Problem 5. Suppose $(\mathbb{R}, \mathcal{M}, \varphi)$ is a measure space such that

(i) $\varphi[-\pi/2, 1 - \pi/2] = e$, and

(ii) for all $A \in \mathcal{M}$ and for all $r \in \mathbb{R}$, we have $\varphi(A + r) = \varphi(A)$.

Compute $\varphi(\mathbb{Q}^c)$.

Problem 6. Let $f : \mathbb{R} \to \mathbb{R}$, and let $E = \{x \in \mathbb{R} \mid f \text{ isn't continuous at } x\}$. True or false:

- (a) If m(E) = 0, then f is Lebesgue measurable.
- (b) If f is Lebesgue measurable, then m(E) = 0.
- (c) If $g : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and $E = \emptyset$, then $g \circ f$ is Lebesgue measurable.
- (d) If $g : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and $E = \emptyset$, then $f \circ g$ is Lebesgue measurable.
- (e) There exists a non-Lebesgue measurable, non-negative function $h : \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that the function \sqrt{h} is Lebesgue measurable.
- (f) If f is differentiable, then f' is Lebesgue measurable.

Problem 7. Is every monotonic function $f : \mathbb{R} \to \mathbb{R}$ **Borel** measurable?

Problem 8. Construct a Lebesgue measurable subset of \mathbb{R} that isn't Borel.

Problem 9. Let $f : [0,1] \to \mathbb{R}$. Suppose that for all $r \in \mathbb{R}$, the set $f^{-1}(\{r\})$ is Lebesgue measurable. Must f be Lebesgue measurable?

You're doing great! Good luck on the midterm—I believe in you! :)